O.P.Code:23HS0840a

Time: 3 Hours

1

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Regular Examinations February-2024 ENGINEERING PHYSICS

(Common to EEE, ECE & CSIT)

PART-A

Max. Marks: 70

L2

L1

L1

L1

L1

L1

L1

L1

2M

2M

2M

2M

2M

2M

2M

2M

CO1

CO1

CO₂

CO2

CO3

CO4

CO5

CO6

	(Answer all the Questions $10 \ge 2 = 200$ Marks)
a	Write any two differences between Fraunofer and Fresnel difraction
b	Define Resolving Power of Grating.
c	Define Lattice parameters.
d	Define Bragg's condition for X-Ray diffraction.
e	Define dielectric constant.
f	Define magnetic susceptibility and magnetization.
g	Define mean free path.
h	Write any two merits of classical free electron theory.

hWrite any two merits of classical free electron theory.CO5L22MiDefine Intrinsic and Extrinsic semiconductors.CO6L12M

j What are the applications of Hall effect

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

2	a	Describe the formation of Newton's ring with necessary theory with	CO1	L3	7 M
		relevant diagrams.			
	հ	Coloulate the thickness of Helf Ways plots given that $u_0 = 1.523$	CO1	т 4	21/

b Calculate the thickness of Half-Wave plate, given that $\mu e = 1.533$, **CO1 L4 3M** $\mu_0 = 1.544$ and $\lambda = 5000$ Å.

OR

3 a Define Diffraction and Explain about Fraunhofer diffraction due to a CO2 L3 10M single slit, with intensity distribution curves.

UNIT-II

4 a Show that Face centered cubic crystal structure has more closely packed CO2 L2 10M structure than SC and BCC.

OR

5	a	Explain how crystal structure determined by Laue X-Ray diffraction	CO2	L2	7M
		method.			
	b	What are the advantages of Laue X-Ray diffraction method?	CO2	L1	3M
		UNIT-III			
6	a	Explain the different types of polarizations.	CO3	L3	4M

b Derive the expression for electronic polarizability, αe in dielectrics. CO3 L4 6M OR 7 a Describe the classification of magnetic materials based magnetic CO4 L1 10M

a Describe the classification of magnetic materials based magnetic CO4 L1 IOM moments.

UNIT-IV

8	a Derive the expression for de Broglie wavelength	CO5	L3	6M
	b Explain the properties of matter waves.	CO5	L2	4M

R23 H.T.No.

OR

		O A				
9	a	Derive an expression for electrical conductivity in a metal by quantum	CO5	L3	7M	
		free electron theory.				
	b	What are the advantages of quantum free electron theory over classical	CO5	L1	3M	
		free electron theory?				
		UNIT-V				
10	a	Derive Einstein's relation for charge carriers in semiconductor.	CO6	L2	5M	
	b	Explain about intrinsic and extrinsic semiconductors.	CO6	L2	5M	
		OR				
11	a	Explain Hall Effect in semiconductors.	CO6	L2	6M	
		4 2 1 2				

b If RH of a specimen is $3.66 \times 10^{-4} \text{ m}^3 \text{ c}^{-1}$. Its resistivity is $8.93 \times 10^{-3} \Omega$ - **CO6 L3 4M** m. Find mobility and electron concentration.

*** END ***

